Все о датчиках температуры.
Первый универсальный русскоязычный портал

Символ нового года

Ядерный синтез вместо расщепления (путь спасения для человечества?)

30.01.2011 | Температура XXI века | Количество просмотров: 6584 | Комментарии (4)

взрыв

Авария на японской станции Фукусима во второй раз продемонстрировала всему миру опасность атомной энергетики. В странах Европы прошли демонстрации против использования атомных станций. И все же, нет оснований считать, что АЭС больше не будут строиться. Жители Земли потребляют все больше и больше энергии. Для некоторых регионов, где запасы природного угля, нефти и газа минимальны, атомная энергия необходима. К сожалению, альтернативные источники энергии, такие как энергия солнечного света, ветра, волн и т.д. не способны принципиально заменить огромное количество потребляемой человечеством энергии (16 ТВт). Их доля в мировом производстве энергии пока составляет всего 0,5%.

Между тем, современный мир стоит перед очень серьезным энергетическим кризисом. Проблема связана с тем, что по всем серьезным прогнозам запасы ископаемых горючих веществ могут иссякнуть уже во второй половине текущего столетия. Более того, сжигание ископаемых топлив может привести к необходимости каким-то образом связывать и «сохранять» выпускаемый в атмосферу углекислый газ (программа CCS) для предотвращения серьезных изменений в климате планеты.

Сейчас крайне необходим новый мощный источник энергии. Настало время прорыва. Иначе человечество может само себя уничтожить в борьбе за оставшиеся под землей запасы нефти и газа.

Самой серьезной альтернативой современным источникам энергии ученые считают управляемый термоядерный синтез.

Ядерный синтез, являющийся основой существования Солнца и звезд, потенциально представляет собой неистощимый источник энергии для развития вселенной вообще.

солнце

Эксперименты, проводимые в Великобритании в рамках программы Joint European Torus (JET), являющейся одной из ведущих исследовательских программ в мире, показывают, что ядерный синтез может обеспечить не только текущие энергетические потребности человечества, но и гораздо большее количество энергии.

Пример термоядерной реакции — дейтерий + тритий

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.

термояд



Именно эту реакцию предполагается использовать в будущих термоядерных реакторах. Но осуществить эту реакцию и сделать ее управляемой очень сложно. Для инициирования (зажигания) реакции синтеза необходимо нагреть газ из смеси дейтерия и трития до температуры выше 100 миллионов градусов Цельсия, что примерно в десять раз выше температуры в центре Солнца. При этой температуре наиболее «энергетические» дейтроны и тритоны (ядра дейтерия и трития) сближаются при столкновениях на столь близкие расстояния, что между ними начинают действовать мощные ядерные силы, заставляющие их сливаться друг с другом в единое целое.

Осуществление процесса ядерного синтеза в лаборатории связано с очень сложными проблемами. Для решения задачи нагрева и удержания газовой смеси ядер D и T были придуманы «магнитные бутылки», получившие название «Токамак» , которые предотвращают взаимодействие плазмы со стенками реактора. Началом современной эпохи в изучении возможностей термоядерного синтеза следует считать 1969 год, когда на российской установке Токамак Т3 в плазме объемом около 1 м 3 была достигнута температура 3 106°C. После этого ученые во всем мире признали конструкцию токамака наиболее перспективной для магнитного удержания плазмы. Уже через несколько лет было принято смелое решение о создании установки JET (Joint European Torus) со значительно большим объемом плазмы (~100 м3). Эта установка начала работать в 1983 году и остается пока крупнейшим в мире токамаком, обеспечивающим нагрев плазмы до температуры 150 106°C.

В настоящее время во Франции начинается строительство международного экспериментального термоядерного реактора ITER. Расшифровывается аббревиатура как International Tokamak Experimental Reactor, но в настоящее время название ITER официально не считается аббревиатурой, а связывается с латинским словом iter — путь.

ITER



На рисунке - проект строительства реактора ITER в местечке Кадараш, Франция

Задачи, стоящие на пути создания термоядерных реакторов и преимущества ядерной энергетики очень подробно и доступно для понимания были изложены в лекции «На пути к термоядерной энергетике», прочитанной председателем Совета ITER Кристофером Ллуэллин-Смитом в ФИАНе. (http:///elementy.ru/lib/430807)

ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. Проблемы и сложности эксплуатации такой установки связаны, прежде всего, с тем, что мощный поток высокоэнергетических нейтронов и выделяющаяся энергия (в виде электромагнитного излучения и частиц плазмы) серьезно воздействуют на реактор и разрушают материалы, из которых он создан. Вторая основная проблема состоит в обеспечении высокой прочности конструкционных материалов реактора при длительной (в течение нескольких лет) бомбардировке нейтронами и под воздействием потока тепла. Третья и, возможно, самая главная проблема состоит в обеспечении высокой надежности работы. Таким образом, проектирование и постройка термоядерных станций требуют от физиков и инженеров решения целого ряда разнообразных и очень сложных технологических задач.

Однако, несмотря на все сложности, проблема стоит того, чтобы ей заниматься самым серьезным образом. Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ. Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Например, количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 ГВт составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 килограмма смеси D+T.

Дейтерий является устойчивым изотопом водорода. Примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого Взрыва). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, тритий будет возникать прямо внутри термоядерной установки в процессе работы, за счет реакции нейтронов с литием.

Таким образом, исходным топливом для термоядерного реактора являются литий и вода. Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов и т. п.). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития термоядерной энергетики (несмотря на все сложности и проблемы) и даже без стопроцентой уверенности в успехе таких исследований.

Дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет. Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.

Термоядерная энергетика не только обещает человечеству, в принципе, возможность производства огромного количества энергии в будущем (без выбросов CO2 и без загрязнения атмосферы), но и обладает повышенной безопасностью. Используемая в термоядерных установках плазма имеет очень низкую плотность (примерно в миллион раз ниже плотности атмосферы), вследствие чего рабочая среда установок никогда не будет содержать в себе энергии, достаточной для возникновения серьезных происшествий или аварий. Кроме того, загрузка «топливом» должна производиться непрерывно, что позволяет легко останавливать ее работу, не говоря уже о том, что в случае аварии и резкого изменения условий окружения термоядерное «пламя» должно просто погаснуть.

В чем состоят связанные с ядерной энергетикой опасности? Во-первых, стоит отметить, что оболочка реактора при длительном нейтронном облучении может стать радиоактивной. Однако при подборе для оболочки материалов с заданными свойствами можно обеспечить распад радиоактивных продуктов с периодом полураспада порядка 10 лет, а полная замена всех компонентов могла бы осуществляться через 100 лет. В случае полного отказа контура охлаждения радиоактивность стенок будет продолжать выделять тепло, но максимальная температура будет значительно ниже того значения, при котором установка расплавится.

Во-вторых, тритий является радиоактивным и имеет относительно небольшой период полураспада (12 лет). Но хотя объем используемой плазмы значителен, из-за ее низкой плотности там содержится лишь очень небольшое количество трития (общим весом примерно как десять почтовых марок). Поэтому, даже при самых тяжелых ситуациях и авариях (полное разрушение оболочки и выделение всего содержащегося в ней трития, например, при землетрясении и падении самолета на станцию), в окружающую среду поступит лишь незначительное количество топлива, что не потребует эвакуации населения из близлежащих населенных пунктов.

Основное препятствие на пути развития исследований в области ядерного синтеза состоит в том, что термоядерную установку обсуждаемого типа нельзя создать и исследовать в малых размерах, поскольку для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение затрачиваемой и получаемой энергии возрастает, по меньшей мере, пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на достаточно крупных станциях, типа упоминавшегося реактора ITER. Общество просто не было готово к финансированию столь крупных проектов, пока не было достаточной уверенности в успехе.

За последние два десятилетия наблюдался и значительный прогресс в теоретическом понимании поведения плазмы. В этой области необходимо отметить два результата, имеющих особую важность в рассматриваемых задачах:

1. Была обнаружена способность горячей плазмы (предсказанная ранее в лаборатории Culham, Великобритания) к самогенерации собственного тока, что получило название «зашнуровки» плазмы. Например, можно ожидать, что примерно 80% от тока величиной 15 MA, необходимого для удержания плазмы в реакторе ITER, будет возникать на основе этого эффекта, в результате чего поддержание рабочего режима реактора потребует намного меньше энергии, а само управление его работой станет гораздо более простым.

2. В Институте физики плазмы в Гархинге (Garching, Германия) в экспериментах по термоядерному слиянию наблюдался режим «высокого удержания», позволяющий значительно повысить давление в системе (то есть увеличить эффективность работы установки) при некоторых значениях магнитного поля в установке.

Реактор ITER создается консорциумом, в который входят Европейское Сообщество, Япония, Россия, США, Китай, Южная Корея и Индия. Общая численность населения этих стран составляет около половины всего населения Земли, так что проект можно назвать глобальным ответом на глобальный вызов. Основные компоненты и узлы реактора ITER уже созданы и испытаны, а строительство уже начато в местечке Кадараш (Франция). Запуск реактора запланирован на 2019 год, а получение дейтерий-водородной плазмы — на 2026 год, так как ввод реактора в действие требует длительных и серьезных испытаний для плазмы из водорода и дейтерия.

Как сказал Кристофер Ллуэллин-Смит, председатель Совета ИТЭР: «Нет абсолютной гарантии, что задача создания термоядерной энергетики (в качестве эффективного и крупномасштабного источника энергии для всего человечества) завершится успешно, но я лично полагаю, что вероятность удачи в этом направлении достаточно высока. Учитывая огромный потенциал термоядерных станций, можно считать оправданными все затраты на проекты их быстрого (и даже ускоренного) развития, тем более, что эти капиталовложения выглядят весьма скромными на фоне чудовищного по объему мирового энергетического рынка (4 триллиона долларов в год). Обеспечение потребностей человечества в энергии является очень серьезной проблемой. По мере того, как ископаемое топливо становится всё менее доступным (помимо этого, его использование становится нежелательным), ситуация изменяется, и мы просто не можем позволить себе не развивать термоядерную энергетику.»

На вопрос «Когда появится термоядерная энергетика?» Лев Арцимович (признанный пионер и лидер исследований в этой области) как-то ответил, что «она будет создана, когда станет действительно необходимой человечеству». Возможно, это время пришло.

Источники

официальный сайт ITER http://www.iter.org/

лекция «На пути к термоядерной энергетике», прочитанная Кристофером Ллуэллин-Смитом, председателем Совета ITER, в ФИАНе. (http://elementy.ru/lib/430807)

Другие статьи раздела

Все статьи раздела "Температура XXI века"

Комментарии:

Александр Магунов, | НИИПМТ

О физических принципах и проблемах термояда, о его трудной истории, о блестящих решениях, заблуждениях и тупиковых подходах, о перспективах термоядерной энергетики подробно рассказано в замечательной популярной книге Г.С.Воронова "Штурм термоядерной крепости" (М.: Наука, 1985, библиотечка Квант, выпуск 37). Геннадий Степанович имеет способность понимать и очень ясно излагать самые сложные идеи. В середине 60-х он был первым, кто экспериментально открыл явление многофотонной ионизации атомов мощным оптическим излучением, а с конца 60-х работает на стеллараторе Л-2М ("Ливень"). Книга есть в интернете.

Артем,

Я конечно с уважением отношусь к написанному в статье.... Но по моему мнению, альтернативная энергия, даже в её малой части, может обеспечить энергией все человечество больше чем вся атомная энергетика вместе взятая... Поэтому разработан проект "Евгеника" одним независимым ученым.... В котором описывается мир без денег, без атомного оружия, без власти... Где каждый человек улучшает мир, в котором живет.... И для этого нам хватит всего 10 лет...

Лена,

Непонятно, как "Евгеника" связана с альтернативной энергией. Евгеника - это популярное в начале ХХ века учение о селекции людей для улучшения генофонда человечества.

Алексей,

Всех поздравляю сегодня, объявляю начало конца, а именно из-за развивающегося большого взрыва в термоядерном синтезе или токамак. Вот люди которые согласны с моими научными исследованиями .Вас беспокоит Расулов Алексей Валерьевич, по какому поводу . Я выступал на международном конгрессе в 2010 году http://www.physical-congress.spb.ru/2010rus.asp по проблематике холодного ядерного синтеза. Сейчас веду переговоры о публикации статьи с журналом альтернативная энергетика и экология. Журнал требует экспериментов связанных с холодным ядерным синтезом. Не могли бы вы оказать мне помощь в продвижении технологии ,найти единомышленников по этой технологии, вот ещё публикация в газетах на эту тему друг для друга Курск http://www.dddkursk.ru/number/895/planet/002055/ . Переработанную статью можно посмотреть здесь http://www.atomic-energy.ru/papers/24062 ; . Так же сеть публикация в журнале изобретатель и рационализатор 2012 году в мае. Также есть группа на сайте Российское Атомное сообщество http://www.atomic-energy.ru/group/24063 . Жду ответа по электронной почте alexras.82@mail.ru . Мой телефон мобильный 89508760167. Домашний 8(4712) 597229 Адрес Курская область, Курский район ,деревня Воронцово, дом 68 индекс 305501. С уважением Расулов А.В.

Лелька,

Я,конечно, не хочу показаться недалеким человеком, но на мой взгляд - термоядерный синтез - это тупиковая затея.... с атомным разрывом цепей доигрались Чернобыль рванул, Факусима... это тоже не будет без последствий. И хоть утверждают, что все прямо таки безопаснее некуда, найдется тот самый инженер, которому на даче просто необходимы детальки именно с этого проекта. ))))))

Добавить комментарий: