Все о датчиках температуры.
Первый универсальный русскоязычный портал

Символ нового года

Почему cверкает молния и гремит гром?

20.08.2010 | Интересные факты о температуре | Количество просмотров: 35971 | Комментарии (2)

молния

Долгожданное отступление жары сопровождается сильными грозами. В Петербурге за последнюю неделю пронеслось два сильнейших грозовых урагана. Зрелище было страшное. Казалось, что небо трещало и разрывалось на части, вспышки молний напоминали взрывы.
Почему возникает такая гроза, как она зарождается в атмосфере? Такие вопросы приходят в голову именно в это грозовое время. Попробуем разобраться, опираясь на компетентные источники. Как Вы увидите, что температура играет здесь важнейшую роль.

Где чаще всего возникают грозы?

Над континентами в тропиках. Над океаном гроз на порядок меньше. Одна из причин такой асимметрии — в интенсивной конвекции в континентальных областях, где суша эффективно прогревается солнечным излучением. Быстрый подъем прогретого воздуха способствует образованию мощных конвективных вертикальных облаков, в верхней части которых температура ниже – 40°C. В результате формируются частицы льда, снежной крупы, града, взаимодействие которых на фоне быстрого восходящего потока и приводит к разделению зарядов.

Примерно 78% всех молний регистрируется между 30°ю.ш. и 30°с.ш. Максимальная средняя плотность числа вспышек на единицу поверхности Земли наблюдается в Африке (Руанда). Весь бассейн р.Конго площадью около 3 млн км 2 регулярно демонстрирует наибольшую молниевую активность.

Как заряжается грозовое облако?

Это самый интересный вопрос в «грозоведении». Грозовые облака огромны. Чтобы на масштабе в несколько километров возникло электрическое поле, сравнимое по величине с пробойным (примерно 30 кВ/см для воздуха в нормальных условиях), нужно, чтобы беспорядочный обмен зарядами при столкновениях облачных твердых или жидких частиц привел к согласованному, коллективному эффекту сложения микротоков в макроскопический ток весьма большой величины (несколько ампер). Как показали измерения электрического поля на поверхности земли, а также внутри облачной среды (на баллонах, самолетах и ракетах), в типичном грозовом облаке «основной» отрицательный заряд — в среднем несколько десятков кулон — занимает интервал высот, соответствующий температурам от 10 до 25°C. «Основной» положительный заряд составляет также несколько десятков кулон, но располагается выше основного отрицательного, поэтому большая часть молниевых разрядов облако—земля отдает земле отрицательный заряд. Однако в нижней части облака также часто обнаруживается меньший по величине (10 Кл) положительный заряд.

Для объяснения описанной выше (трипольной) структуры поля и заряда в грозовом облаке рассматривается множество механизмов разделения зарядов. Они зависят, прежде всего, от таких факторов, как температура и фазовый состав среды. Несмотря на обилие различных микрофизических механизмов электризации, сейчас многие авторы считают главным безындукционный обмен зарядами при столкновениях мелких (с размерами от единиц до десятков микрометров) кристаллов льда и частиц снежной крупы. В лабораторных экспериментах было установлено наличие характерного значения температуры, при которой меняется знак заряда, т.н. точки реверса, лежащей обычно между 15 и 20°C. Именно эта особенность сделала данный механизм столь популярным, так как с учетом типичного профиля температуры в облаке она объясняет трипольную структуру распределения плотности заряда.

Недавние эксперименты показали, что многие грозовые облака обладают еще более сложной структурой пространственного заряда (до шести слоев). Восходящие потоки в таких облаках могут быть слабые, но электрическое поле имеет устойчивую многослойную структуру. Вблизи нулевой изотермы (0 °С) здесь формируются достаточно узкие (толщиной в несколько сотен метров) и стабильные слои пространственного заряда, во многом ответственные за высокую молниевую активность. Вопрос о механизме и закономерностях образования слоя положительного заряда в окрестности нулевой изотермы остается дискуссионным. Разработанная в ИПФ модель, основанная на механизме разделения зарядов при таянии ледяных частиц, подтверждает формирование слоя положительного заряда при таянии ледяных частиц вблизи нулевой изотермы на высоте около 4 км. Расчеты показали, что за 10 минут образуется структура поля с максимумом около 50 кВ/м.

Как происходит разряд молнии?

Существует несколько теорий. Недавно был предложен и исследован новый сценарий молнии, связанный с достижением облаком режима самоорганизованной критичности. В модели электрических ячеек (с характерным размером ~1—30 м) со случайно растущим в пространстве и времени потенциалом отдельный мелкомасштабный пробой между парой ячеек способен вызвать «эпидемию» внутриоблачных микроразрядов — разыгрывается стохастический процесс фрактальной «металлизации» внутриоблачной среды, т.е. быстрый переход облачной среды в состояние, напоминающее обьемную паутину из динамичных проводящих нитей, на фоне которых и формируется видимый глазом канал молнии — проводящий плазменный канал, по которому переносится основной электрический заряд

По некоторым представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Интересно, что наличие ячеистой структуры электрического поля в грозовом облаке оказывается существенным для процесса ускорения электронов до релятивистских энергий. Случайно ориентированные электрические ячейки наряду с ускорением резко увеличивают время жизни релятивистских электронов в облаке благодаря диффузионному характеру их траекторий. Это позволяет объяснить значительную продолжительность всплесков рентгеновского и гамма излучений и характер их взаимосвязи с молниевыми вспышками. Роль космических лучей для атмосферного электричества должны прояснить эксперименты по исследованию их корреляции с грозовыми явлениями. Такие эксперименты ведутся в настоящее время на ТяньШанской высокогорной научной станции Физического института РАН и на Баксанской нейтринной обсерватории Института ядерных исследований РАН.

Отметим также, что разрядные явления в средней атмосфере, коррелирующие с грозовой активностью, получили разные наименования в зависимости от высоты над Землей. Это спрайты (область свечения простирается от высот 50—55 км до 85—90 км над землей, а длительность вспышки составляет от единиц до десятков миллисекунд), эльфы (высоты — 70—90 км, продолжительность менее 100 мкс) и джеты (разряды, стартующие в верхней части облака и распространяющиеся порою до мезосферных высот со скоростью около 100 км/с).

Температура молнии

В литературе можно найти данные, что температура канала молнии при главном разряде может превышать 25 000 °C. Наглядным свидетельством того, что температура молнии может достигать 1700 °С являются найденные на скалистых вершинах гор и в районах с сильной грозовой активностью фульгуриты (от лат. fulgur — удар молнии) — спёкшиеся от удара молнии кварцевые трубки,которые могут быть разнообразной причудливой формы.

фульгурит

На фото фульгурит, найденный в 2006 г. в штате Аризона, США (подробности на сайте www.notjustrocks.com). Появление стеклянной трубочки связано с тем, что между песчинками всегда находятся воздух и влага. Электрический ток молнии за доли секунд раскаляет воздух и водяные пары до огромных температур, вызывая взрывообразный рост давления воздуха между песчинками и его расширение. Расширяющийся воздух образует цилиндрическую полость внутри расплавленного песка. Последующее быстрое охлаждение фиксирует фульгурит — стеклянную трубочку в песке. Фульгуриты, состоящие из переплавленного кремнезёма, обыкновенно представляют собой конусообразные трубочки толщиной с карандаш или с палец. Их внутренняя поверхность гладкая и оплавленная, а наружная образована приставшими к оплавленной массе песчинками и посторонними включениями. Цвет фульгуритов зависит от примесей минералов в песчаной почве. Фульгурит очень хрупок, и попытки очистить от прилипшего песка нередко приводят к его разрушению. Особенно это относится к ветвистым фульгуритам, образовавшимся во влажном песке. Диаметр трубчатого фульгурита не более нескольких сантиметров, длина может доходить до нескольких метров, находили фульгурит длиной 5-6 метров.

Изучением молнии и вообще атмосферного электричества – это очень интересное и важное научное направление. На эту тему опубликовано множество научных трудов и популярных статей. Ссылка на одну из наиболее исчерпывающих обзорных работ приводится в конце нашей заметки.

В заключение хочется отметить, что молнии — серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

Похожие статьи на сайте:

Почему небо голубое?

Глобальное изменение климата

Остановится ли Гольфстрим?

Что такое ледяной дождь?

Температура над Землей

Загадка снежинки

Если прибавить к морозу ветер…

Другие статьи раздела

Все статьи раздела "Интересные факты о температуре">> Все статьи нашего блога >>

Комментарии:

ляйсан,

мне понравилось как мне расказовали . Большое спасибо!

Добавить комментарий: