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I. INTRODUCTION

It is known that intensive energy fluxes affect-
ing an object can change its aggregate state, i.e.,
melting, boiling, and partial evaporation of an ob-
ject during subsecond time intervals may occur. So,
at every moment, the thermal radiation spectrum
contains unique information about the object state.
The spectral intensity (brightness) I (\) from the
area element at the wavelength A is registered in the
sighting direction by a pyrometer (or spectrometer).
For a free-emitting surface, there is no reflected radi-
ation, and the thermal radiation spectrum is deter-
mined by temperature T and by optical properties
of the surface. Therefore, the following equality is
true:
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where ¢ (A, T) is the spectral radiant emittance (or
spectral emissivity) of the sighting area in the sight-
ing direction, and Iy (\,T) is the spectral intensity
of a blackbody at temperature 7" and wavelength A,
calculated in accordance with Planck formula:
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Here C1, cg are the known constants. Functions I (\)
and € (A, 1) are assumed to be continuous. To de-
termine uniquely the temperature 7" from the spec-
tral intensity I (\) we have to solve the equation (1)
with value € (A, T'), which is often unknown. With-
out knowledge of the radiant emittance e (A, T), the
problem of contactless measurement of the temper-
ature of a free—emitting body is underdetermined.
Thus, the problem is ill-posed with infinitely many

solutions.

It is well known that any additional information
about the solution is of great importance for solving
ill posed problems [1]. By including the information
in the problem statement and in solving algorithms,
we can pick up the solution with required a priori
properties and make the problem numerically stable.

To determine the temperature from equation (1)
with unknown function € (A, T') , we accept following
general a priori assumptions:

a) parametric form of function is given: e (\) =
e (\,a) where a = (a1, az, ..., a,) is the vector of un-
known parameters that have to be found together
with T from the system of m equations
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with m >n + 1.
b) a priori intervals for T and \ are given: T €
[Tmina Tmax]; A€ [)\mina )\max]-

The examples of those assumptions in different
combinations can be found in papers [2-5]. In this
paper we present a numerical algorithm for determi-
nation of T and e (\), which is based on the min-
imization problem for the function of discrepancy.
Using a special form of initial approximation, the
algorithm specifies consequently the type of relation-
ship € (\;, a), proceeding from the simplest linear to
more complex dependencies, being nonlinear in A
and a. In doing so, the corresponding temperature
is adjusted for every new dependence. The process
continues until we obtain that the calculated rela-
tionship e (\;,a) I (A, T) is adequate to the exper-
imental data. The algorithm was tested for a wide
class of data generated with the help of model val-
ues € (A). The algorithm stability was estimated un-
der data disturbance with model random errors, be-
ing similar to experimental errors in the magnitude.
The proposed algorithm allows to estimate a range
of possible recovered temperatures and correspond-
ing standard deviation.

II. BASIC RELATIONSHIPS

Data I (\) are given on the grid {\;}™,, \; €
[Amins Amax], with an experimental error. So, we
know, instead of I ()\;), approximate values I° (\;),
measured with § r.m.s error
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S = {ZE [ (Ai)]Q}l/Q.

Therefore, accepting specific analytical model
e (A\) = e (A a) (with parameters a from the permis-
sible class D), we just can try to fit adequately the
input data I (\;) using the relationship I (\;a,T) =
e (A, a)Io (A, T). The relative accuracy of fitting is
characterized by the value of discrepancy:

A(a,T) = % Z ey a) To (A, T) — 10 (0)]

The best accuracy of fitting (in the sense of Least
Squares) should provide the optimal values T* and
a for which the following is fulfilled:

Ala*, T%) =

inf {A(a, T) rac D,T S [Tmianmax]} = 5§ppr'
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Minimizing the function A(a,T') in arguments a and
T, we obtain the value of dqppr as a characteristic of
the accepted model I (A\;a,T). The model is consid-
ered to be adequate for data I° (\;), if Sappr < 6.
Below we refer to the number dqppr as the accuracy
of data approximation by accepted model. Descrip-
tion of the algorithm for problem solution is given
in [6].

IIT. RESULTS OF COMPUTATIONAL
EXPERIMENTS

To analyze the properties of presented algorithm,
we tested it in a series of computational experiments
with data obtained in a scheme of ”quasi-real” ex-
periment [1].

In a real experiment, the values I° ()\;) are found
with the error depending on random and systematic
factors. Besides, the values of used wavelengths are
known only approximately. In a ”quasi-real” com-
putational experiment, the wavelengths \; are given
exactly, and sighting supposed to be normal to the
area element. The ”quasi-real” experimental data
were calculated for a chosen substance by formula
16 ()\z) =& ()\i, To) IO ()\inO) . Here ¢ ()\i; To) is the
experimental normal emissivity at a known temper-
ature Tp. Quasi-real data I° ()\;) were disturbed by
normal random error with the zero mean and the rel-
ative standard deviation d (see details in [7]). Below,
some results of our computations for model temper-
ature recovery are presented in fig.1 and 2. The fig-
ures illustrate the minimization procedure (3). The
curves present for different error levels § calculated
best residual values for parametric dependencies, i.e.

A(T) =inf {A(a,T):a € D},

depending on T', while the numbers § are depicted
by horizontal continuous lines. Crossections of lines
and curves determine intervals of true temperature
estimates T.qjc.

IV. CONCLUSIONS

1. The algorithm of temperature and emissiv-
ity dependence recovery from continuous spectra of
emitted radiation (for opaque heated bodies) was
developed for a wide class of parametric models of
e (\,a), which are typical for real materials. This
algorithm allows an estimate of a range of possible
temperatures and corresponding snandart deviation.

2. The database of parametric models € (A, a) can
easily be modified or extended for different types of
the studied object and/or its surface structure.

3. For an isothermal system of surfaces (or cavi-
ties), the temperature of the sighting area in a given
direction can be found using the same algorithm.

4. Proposed algorithm allows to estimate ranges
of possible true temperatures for given levels of data
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Figure 1. Illustration of Teqi. finding for Molybdenum
at different r.m.s errors §. True temperature is To =
2000K (the emissivity data from [8]).
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Figure 2. Ilustration of T, finding for Tantalum at
different r.m.s errors 6. True temperature is Ty = 2000K
(the emissivity data from [9]).

error 6. The ranges appear to be "narrow” enough
to estimate true temperature with high accuracy.

5. The influence of increasing number of terms n
in parametric dependencies € (A, a) on the accuracy
of true temperature recovery was investigated. It
was found for examples of polynomial parametrical
dependencies, that if n > 10 the recovery problems
appear to be highly ill-conditioned. So, reliable tem-
perature estimates can be obtained when n ~ 1 — 4.
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