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I. INTRODUCTION

It is known that intensive energy fluxes affect-
ing an object can change its aggregate state, i.e.,
melting, boiling, and partial evaporation of an ob-
ject during subsecond time intervals may occur. So,
at every moment, the thermal radiation spectrum
contains unique information about the object state.
The spectral intensity (brightness) I (λ) from the
area element at the wavelength λ is registered in the
sighting direction by a pyrometer (or spectrometer).
For a free-emitting surface, there is no reflected radi-
ation, and the thermal radiation spectrum is deter-
mined by temperature T and by optical properties
of the surface. Therefore, the following equality is
true:

I (λ) = ε (λ, T ) I0 (λ, T ) , (1)

where ε (λ, T ) is the spectral radiant emittance (or
spectral emissivity) of the sighting area in the sight-
ing direction, and I0 (λ, T ) is the spectral intensity
of a blackbody at temperature T and wavelength λ,
calculated in accordance with Planck formula:

I0 (λ, T ) = π−1C1λ
−5
[

exp
( c2

λT

)

− 1
]

−1

.

Here C1, c2 are the known constants. Functions I (λ)
and ε (λ, T ) are assumed to be continuous. To de-
termine uniquely the temperature T from the spec-
tral intensity I (λ) we have to solve the equation (1)
with value ε (λ, T ), which is often unknown. With-
out knowledge of the radiant emittance ε (λ, T ), the
problem of contactless measurement of the temper-
ature of a free–emitting body is underdetermined.
Thus, the problem is ill-posed with infinitely many
solutions.

It is well known that any additional information
about the solution is of great importance for solving
ill posed problems [1]. By including the information
in the problem statement and in solving algorithms,
we can pick up the solution with required a priori
properties and make the problem numerically stable.

To determine the temperature from equation (1)
with unknown function ε (λ, T ) , we accept following
general a priori assumptions:

a) parametric form of function is given: ε (λ) =
ε (λ, a) where a = (a1, a2, ..., an) is the vector of un-
known parameters that have to be found together
with T from the system of m equations

I (λi) = ε (λi,a) I0 (λi, T ) , i = 1, 2, ..., m, (2)

with m > n + 1.
b) a priori intervals for T and λ are given: T ∈

[Tmin, Tmax], λ ∈ [λmin, λmax].

The examples of those assumptions in different
combinations can be found in papers [2–5]. In this
paper we present a numerical algorithm for determi-
nation of T and ε (λ), which is based on the min-
imization problem for the function of discrepancy.
Using a special form of initial approximation, the
algorithm specifies consequently the type of relation-
ship ε (λi,a), proceeding from the simplest linear to
more complex dependencies, being nonlinear in λ

and a. In doing so, the corresponding temperature
is adjusted for every new dependence. The process
continues until we obtain that the calculated rela-
tionship ε (λi,a) I0 (λ, T ) is adequate to the exper-
imental data. The algorithm was tested for a wide
class of data generated with the help of model val-
ues ε (λ). The algorithm stability was estimated un-
der data disturbance with model random errors, be-
ing similar to experimental errors in the magnitude.
The proposed algorithm allows to estimate a range
of possible recovered temperatures and correspond-
ing standard deviation.

II. BASIC RELATIONSHIPS

Data I (λ) are given on the grid {λi}
m
i=1, λi ∈

[λmin, λmax], with an experimental error. So, we
know, instead of I (λi), approximate values Iδ (λi),
measured with δ r.m.s error

δ =

(

m
∑

i=1

[

I (λi) − Iδ (λi)
]2

)1/2/

S,

S ≡

{

m
∑

i=1

[

Iδ (λi)
]2

}1/2

.

Therefore, accepting specific analytical model
ε (λ) = ε (λ, a) (with parameters a from the permis-
sible class D), we just can try to fit adequately the
input data Iδ (λi) using the relationship I (λ;a, T ) =
ε (λ, a) I0 (λ, T ). The relative accuracy of fitting is
characterized by the value of discrepancy:

∆(a, T ) =
1

S2

m
∑

i=1

[

ε (λi,a) I0 (λi, T ) − Iδ (λi)
]2

.

The best accuracy of fitting (in the sense of Least
Squares) should provide the optimal values T ∗ and
a for which the following is fulfilled:

∆(a∗, T ∗) =

inf {∆(a, T ) : a ∈ D, T ∈ [Tmin, Tmax]} ≡ δ2
appr.

(3)
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Minimizing the function ∆(a, T ) in arguments a and
T , we obtain the value of δappr as a characteristic of
the accepted model I (λ;a, T ). The model is consid-
ered to be adequate for data Iδ (λi), if δappr ≤ δ.
Below we refer to the number δappr as the accuracy
of data approximation by accepted model. Descrip-
tion of the algorithm for problem solution is given
in [6].

III. RESULTS OF COMPUTATIONAL

EXPERIMENTS

To analyze the properties of presented algorithm,
we tested it in a series of computational experiments
with data obtained in a scheme of ”quasi-real” ex-
periment [1].

In a real experiment, the values Iδ (λi) are found
with the error depending on random and systematic
factors. Besides, the values of used wavelengths are
known only approximately. In a ”quasi-real” com-
putational experiment, the wavelengths λi are given
exactly, and sighting supposed to be normal to the
area element. The ”quasi-real” experimental data
were calculated for a chosen substance by formula
Iδ (λi) = ε (λi, T0) I0 (λi, T0) . Here ε (λi, T0) is the
experimental normal emissivity at a known temper-
ature T0. Quasi-real data Iδ (λi) were disturbed by
normal random error with the zero mean and the rel-
ative standard deviation δ (see details in [7]). Below,
some results of our computations for model temper-
ature recovery are presented in fig.1 and 2. The fig-
ures illustrate the minimization procedure (3). The
curves present for different error levels δ calculated
best residual values for parametric dependencies, i.e.

∆(T ) = inf {∆(a, T ) : a ∈ D} ,

depending on T , while the numbers δ are depicted
by horizontal continuous lines. Crossections of lines
and curves determine intervals of true temperature
estimates Tcalc.

IV. CONCLUSIONS

1. The algorithm of temperature and emissiv-
ity dependence recovery from continuous spectra of
emitted radiation (for opaque heated bodies) was
developed for a wide class of parametric models of
ε (λ, a), which are typical for real materials. This
algorithm allows an estimate of a range of possible
temperatures and corresponding snandart deviation.

2. The database of parametric models ε (λ, a) can
easily be modified or extended for different types of
the studied object and/or its surface structure.

3. For an isothermal system of surfaces (or cavi-
ties), the temperature of the sighting area in a given
direction can be found using the same algorithm.

4. Proposed algorithm allows to estimate ranges
of possible true temperatures for given levels of data
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Figure 1. Illustration of Tcalc finding for Molybdenum
at different r.m.s errors δ. True temperature is T0 =
2000K (the emissivity data from [8]).
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Figure 2. Illustration of Tcalc finding for Tantalum at
different r.m.s errors δ. True temperature is T0 = 2000K

(the emissivity data from [9]).

error δ. The ranges appear to be ”narrow” enough
to estimate true temperature with high accuracy.

5. The influence of increasing number of terms n

in parametric dependencies ε (λ, a) on the accuracy
of true temperature recovery was investigated. It
was found for examples of polynomial parametrical
dependencies, that if n > 10 the recovery problems
appear to be highly ill-conditioned. So, reliable tem-
perature estimates can be obtained when n ∼ 1− 4.
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