Все о датчиках температуры.
Первый универсальный русскоязычный портал

Символ нового года

Литература по лазерной термометрии твердых тел

Обзоры (аннотации и оглавления)

1). I.P. Herman, Real-time Optical Thermometry During Semiconductor Processing / IEEE Journal of Selected Topics in Quantum Electronics. 1995. V.1, No.4. P.1047-1053.
The optical techniques used to monitor the temperature of wafers during semiconductor processing are surveyed. The physical principles underlying each method are described. Applications of each optical diagnostic are presented, along with the strength and weaknesses of the probe. Most of these optical diagnostics have been implemented in research reactors to monitor wafer temperature during one or several types of thin-film processing, such as molecular beam epitaxy, rapid thermal processing, and plasma etching. Pyrometry is the workhorse of noninvasive optical probes of temperature, although it needs supporting models and optical measurements to improve accuracy. Other optical thermometric wafer diagnostics are very promising and are being developed intensively, particularly reflection interferometry, transmission spectroscopy, and various interferometry methods that directrly measure the thermal expansion of the wafer.
1. Introduction.
2. Need for Thermometry in Thin-Film Processing.
3. Physical Basis of Optical Thermometry.
4. Comparison of Optical Thermometry Probes.
5. Concluding Remarks.
References – 110 titles.


2). А.Н. Магунов, О.В. Лукин, Оптические методы измерения температуры полупроводниковых кристаллов в диапазоне 300-800 К (обзор) / Микроэлектроника. 1996. Т.25, №2. С.97-111.
В обзоре проведен сравнительный анализ методов термометрии полупроводниковых кристаллов в процессах микротехнологии. Обсуждаются условия проведения измерений и ограничения традиционных методов (термопарного и радиационного). Рассматриваются физические принципы и особенности, положенные в основу быстро развивающейся группы методов, в которых измеряются температурно-чувствительные параметры полупроводников. Проведены оценки методов по ряду критериев, важных для температурных измерений: производительности, помехозащищенности, чувствительности, температурному диапазону измерений, идентифицируемости сигнала. скачать pdf (1 МБ)
1. Введение.
2. Требования к методам.
3. Ограничения традиционных методов термометрии.
4. Общая схема оптической термометрии.
5. Термометрия по отражению и пропусканию света кристаллами.
5.1. Коэффициенты отражения и пропускания.
5.2. Спектры пропускания-отражения и оптические параметры монокристалла кремния
при 300 К.
5.3. Температурные зависимости оптических параметров кристаллов.
5.4. Температурная зависимость спектров пропускания и отражения.
5.5. Амплитудные методы термометрии.
5.6. Спектральные методы термометрии.
5.7. Фазовые методы термометрии.
5.8. Измерительные характеристики методов.
6. Другие методы оптической термометрии.
7. Заключение.
Список литературы – 53 наименования.


3). J. Kolzer, E. Oesterschulze, G. Deboy, Thermal Imaging and Measurement Techniques for Electronic Materials and Devices / Microelectronic Engineering. 1996. V.31. P. 251-270.
The temperature stress occurring during electrical operation plays an important part in optimizing the performance and reliability of electronic devices. Thermal stress results from short transient processes as well as from long-term cyclic stresses in a real system environment. The thermal characterization of material, electronic components and modules by experiment represents an important contribution to quantifying and minimizing temperature stresses within the scope of a comprehensive approach to thermal management. This overview article describes the principles, characteristics and applications of optical techniques that measure the absolute or relative temperatures of electronic devices or detect the thermal properties of materials. The range of techniques extends from conventional thermography via scanning laser probing (beam reflection and deflection techniques) up to near-field thermal microscopy. The presentation focuses on passive techniques that investigate the device under test in electrical operation (self-heating), but also take a look as photothermal methods that heat the specimen with a laser beam and analyze the thermal response (active techniques).
1. Introduction.
2. Methodology.
3. Thermal Imaging and Measurement Techniques.
3.1. Mapping techniques.
3.1.1. Liquid crystal thermography.
3.1.2. Fluorescent microthermography.
3.1.3. Infrared thermography.
3.2. Optical beam displacement (reflected light).
3.2.1. Optical interferometry.
3.2.2. Thermoreflectance laser probing.
3.3. Optical beam deflection (mirage effect).
3.3.1. Photothermal deflection spectroscopy.
3.3.2. Internal infrared-laser deflection.
3.4. Near-field techniques: Scanning thermal microscopy.
3.4.1. STM-based thermocouple probe.
3.4.2. SFM-based resistive probe tip.
4. Conclusions.
References – 114 titles.


4). А.Н.Магунов, Лазерная интерференционная термометрия полупроводников и диэлектриков (обзор) / Приборы и техника эксперимента.
1998. №3. С.6-18. скачать pdf (700 кБ)
Дан обзор работ, посвященных развитию и применению метода лазерной термометрии твердого тела, имеющего форму плоскопараллельной пластинки, выполняющей роль интерферометра Фабри-Перо, оптическая толщина которого изменяется с температурой. Температурная чувствительность интерференционной термометрии в 102 – 103 раз выше чувствительности других лазерных методов и в сотни раз выше чувствительности платинового термометра сопротивления. Обсуждается выбор оптической схемы, методы обработки сигнала, диапазон измеряемых температур. Приведены примеры применения метода для термометрии поверхностей, подвергаемых воздействию плазмы и лазерного излучения.
Введение.
Регистрация и обработка интерферограммы.
Форма и амплитуда резонансов.
Температурная чувствительность.
Диапазон измеряемых температур.
Интерферометр Фабри-Перо с неидеальными зеркалами.
Знак изменения фазового сдвига.
Инерционность термометрии.
Влияние зондирующего пучка на результат измерений.
Сравнение с другими методами лазерной термометрии.
Области и условия применения метода.
Заключение.
Список литературы – 68 наименований.


5). Z.M. Zhang, Surface temperature measurement using optical techniques / Annual Review of Heat Transfer. 2000. V.11. P.351-411.
Optical techniques can be used for fast and noninvasive temperature measurements with high spatial resolutions. This article provides a survey of various surface temperature measurement methods that utilize optical devices. The physical mechanisms and operating principles of each method are summarized, and recent developments and applications are reviewed. Emphasis is given to the development and application of thermometry in materials processing, microelectronic devices, and the study of energy transport.
1. Introduction.
1.1. Temperature Scale.
1.2. Practical Temperature Measurement.
2. Optical and Radiative Properties.
2.1. Refractive Index and Absorption Coefficient.
2.2. Properties of Silicon.
2.3. Radiative Properties.
3. Radiation Thermometry or Pyrometry.
3.1. General Theory.
3.2. The Ripple Technique.
3.3. Methods for Emissivity Compensation.
3.4. Fourier Transform Infrared Spectrometry.
3.5. Infrared Thermography and High-Speed Pyrometry.
4. Thermoreflectance.
4.1. Laser Reflectance Thermometry.
4.2. Polarized Differential Reflectance.
4.3. Scanning Laser Reflectance.
5. Photothermal Methods.
5.1. Photothermal Pyrometry.
5.2. Pulsed Photothermal Pyrometry.
5.3. Photoacoustic Thermometry.
6. Interferometry.
6.2. Pyrometric Interferometry.
6.3. Spectroscopic Interferometry.
6.4. Diffraction Grating and Speckle Interferometry.
7. Thermometers Based on Absorption.
7.1. Absorption and Transmission.
7.2. Band-Gap Thermometry.
7.3. Diffuse Reflectance Spectroscopy.
8. Fluorescence Thermometry.
8.1. Physical Principles.
8.2. Applications.
8.3. Calibration and Temperature Transfer Standard.
9. Other Techniques.
9.1. Ellipsometry.
9.2. Raman Spectroscopy.
9.3. Liquid Crystal Thermography.
9.4. Scanning (Near-Field) Thermal Microscopy.
9.5. Optical Micrometer.
10. Conclusions and Future Research.
References – 285 titles.


6). P.R.N. Childs, J.R. Greenwood, C.A. Long, Review of temperature measurement / Review of Scientific Instruments. 2000. V.71, No.8. P. 2959-2978.
A variety of techniques are available enabling both invasive measurement, where the monitoring device is installed in the medium of interest, and noninvasive measurement where the monitoring system observes the medium of interest remotely. In this article we review the general techniques available, as well as specific instruments for particular applications. The issues of measurement criteria including accuracy, thermal disturbance and calibration are described. Based on the relative merits of different techniques, a guide for their selection is provided.
1. Introduction.
2. Invasive Temperature Measurement Techniques.
3. Semiinvasive Temperature Measurement Techniques.
A. Thermochromic liquid crystals.
B. Thermographic phosphors.
C. Heat sensitive paints.
4. Noninvasive Temperature Measurement Techniques.
A. Infrared thermography.
B. Refractive index methods.
C. Absorption and emission spectroscopy.
D. Line reversal.
E. Spontaneous Rayleigh and Raman scattering.
F. Coherent anti-Stokes Raman scattering.
G. Degenerative four wave mixing.
H. Laser-induced fluorescence.
I. Speckle methods.
J. Acoustic thermography.
5. Selection.
References – 187 titles.


7). А.Н.Магунов, Лазерная термометрия твердых тел в плазме (обзор) / Приборы и техника эксперимента. 2000. №2. С.3-28. скачать pdf (800 кБ)
Рассматриваются принципы, особенности и ограничения ряда новых бесконтактных методов определения температуры твердого тела. Термометрия основана на дистанционном измерении температурно-зависимых параметров твердого тела с помощью зондирующего светового пучка. Обсуждаются задачи и условия измерения температуры поверхности в газовых разрядах, способы проверки влияния плазмы на оптические параметры твердого тела. Методы оцениваются по ряду критериев, важных при практическом применении в условиях электромагнитных помех, оптического излучения разряда, частой смены исследуемых образцов. Диапазон измеряемых температур для некоторых методов превышает 1000 К, различимые градации температуры составляют обычно 0.1-1 К. Относительная чувствительность большинства лазерных методов не ниже, а в некоторых случаях в 10-100 раз выше, чем традиционных методов термометрии. Приведены результаты, имеющие методическое значение для развития температурной диагностики процессов на границе раздела плазма-поверхность. Обозначены нерешенные проблемы нового направления термометрии.
Введение.
Задачи и проблемы температурных измерений в плазме.
Постановка задачи по созданию метода термометрии в плазме.
Активная термометрия.
Термометрия поверхности.
Нелинейно-оптическая термометрия.
Термометрия прозрачных и полупрозрачных пластин.
Объекты и условия лазерной термометрии в плазме.
Методические особенности активных измерений температуры в плазме.
Некоторые результаты, полученные с применением лазерной термометрии в плазме.
Нерешенные задачи лазерной термометрии.
Заключение.
Список литературы – 103 наим.


8). W. Claeys, S. Dilhaire, S. Jorez, L.-D. Patino-Lopez, Laser probes for the thermal and thermomechanical characterization of microelectronic devices / Microelectronics Journal. 2001. V.32. P.891-898.
The paper presents a review of some of the recent works that we have done on thermal characterization of running electronic devices by laser probing. Both the single point probing and the surface imaging methodologies are considered. Besides temperature mapping, laser point probing allows fault detection in integral circuits. Electronic speckle pattern interferometry and shearography methodologies are presented, and examples of images of running power devices and this relation to the underlying thermomechanical stress are shown.
1. Introduction.
2. Single point probing methods.
3. Laser thermal probing based on imaging methods.
4. Conclusion.
References – 14 titles.


9). I.P. Irving, Optical Diagnostics for Thin Film Processing / Annual Review of Physical Chemistry. 2003. V.54. P.277-305.
Optical diagnostics are used to probe the plasma or neutral gas above the substrate, particles in the gas or on the surface, the film surface and reactor walls, the film itself, and the substrate during thin film processing. The development and application of optical probes are highlighted, in particular for analyzing plasma/gas phase intermediates and products and film composition, and performing metrology, thermometry, and endpoint detection and control. Probing etching and deposition are emphasized.
Introduction.
Plasma and Neutral Gas Phases.
Optical Emission Spectroscopy.
OES Actinometry.
Laser-Induced Fluorescence.
Absorption.
Surfaces and walls.
Reflectance Difference Spectroscopy.
Films.
Reflectometry.
Ellipsometry.
References – 275 titles.
В этом обзоре о лазерной термометрии твердых тел сказано очень мало.


10). M. Asheghi, Y. Yang, Micro- and Nano-Scale Diagnostic Techniques for Thermometry and Thermal Imaging of Microelectronic and Data Storage Devices / In: Microscale Diagnostic Techniques, Kenneth S. Breuer (Ed.). Berlin Heidelberg: Springer, 2005. P. 155-196.
Further improvements in performance, design and reliability in high-technology semiconductor and data storage devices will be difficult, if not impossible, without high temporal and spatial thermal imaging, thermometry, and thermal characterization of their constituent components and materials. This manuscript describes the principles, characteristics and applications of electrical and optical thermometry techniques that measure the absolute and relative temperatures of microelectronics and data storage devices. The range of techniques includes conventional thermal imaging using scanning probing, near-field thermal microscopy, and scanning probe microscopy. This manuscript focuses on high spatial and temporal resolution thermometry of devices with dimentions in the range of ten to several hundred nanometers, and time scales in the range of several picoseconds to tens of nanoseconds, respectively.
1. Introduction.
2. State-Of-Art Technologies and Relevant Thermal Phenomenon in Semiconductor Devices
3. State-Of-Art Technologies and Relevant Thermal Phenomena in Data Storage Technologies.
4. Thermometry.
4.1. Electrical Thermometry.
4.2. Far-Field Optical Thermometry.
4.3. Near- Field Optical Thermometry.
4.4. Summary and Recommendations.
References – 130 titles.


11). Gentleman M.M., Lughi V., Nychka J.A., Clarke D.R., Noncontact methods for measuring thermal barrier coatings temperatures / Int. J. Appl. Ceram Technol. 2006. V.3, No.2. P.105-112.
Three noncontact, optical methods for measuring temperature are reviewed with emphasis on their application to the measurement of temperatures of thermal barrier coatings. The methods are: infrared pyrometry, Raman spectroscopy, and photo-stimulated luminescence from lanthanide-doped coatings. Although each has the capability of measuring temperatures perrinent to monitoring TBCs, the finite thickness of typical coatings together with the optical properties of zirconia place severe restrictions on the depth from which the temperature sensing can be obtained. Some of these limitations can be circumvented using photo-stimulated luminescence with coatings containing dopants at specific locations. To illustrate this, it is demonstrated that by depositing coatings with a lanthanide dopants, such as Eu3+, at specific locations, for instance in contact with the metallic alloy, temperature sensing can be performed with much higher spatial resolution.
Introduction.
Infrared Pyrometry.
Raman Spectroscopy.
Luminescence Spectroscopy.
Discussion.
References – 25 titles.


12). T. Beechem, S. Graham, Temperature Measurement of Microdevices using Thermoreflectance and Raman Thermometry / In: BioNanoFluidic MEMS. Peter J. Hesketh (Ed). Springer US, 2007. P.153-174.
Device temperature is often a primary factor in the proper operation, reliability, and lifetime of both MEMS and microelectronics. Thus, the measurement and verification of operational temperature is often an integral aspect the design and improvement of microdevices for commercial applications. Raman thermometry and thermoreflectance are two techniques commonly employed in the measurement of temperature at small length scales since they are noncontact in nature and their spatial and temporal resolution is on par with the needs of current device architectures. This work provides a summary in the physical basis, experimental methodology, and application of each of these techniques with respect to the analysis of microdevices.


13). S.P. Kearney, et al., Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy / Review of Scientific Instruments. 2007. V.78, No.6. 061301.
Analysis of the Raman Stokes peak position and its shift has been frequently used to estimate either temperature or stress in microelectronics and microelectromechanical system devices. However, if both fields are evolving simultaneously, the Stokes shift represents a convolution of these effects, making it difficult to measure either quantity accurately. By using the relative independence of the Stokes linewidth to applied stress, it is possible to deconvolve the signal into an estimation of both temperature and stress. Using this property, a method is presented whereby the temperature and stress were simultaneously measured in doped polysilicon microheaters. A data collection and analysis method was developed to reduce the uncertainty in the measured stresses resulting in an accuracy of +/-40 MPa for an average applied stress of -325 MPa and temperature of 520 degrees C. Measurement results were compared to three-dimensional finite-element analysis of the microheaters and were shown to be in excellent agreement. This analysis shows that Raman spectroscopy has the potential to measure both evolving temperature and stress fields in devices using a single optical measurement.

Некоторые статьи по лазерной термометрии твердых тел

Термометрия по сдвигу края поглощения (к началу 2009 г. опубликовано более 60 статей)

1). Sturm J.C., Schwartz P.V., Garone P.M. Silicon temperature measurement by infrared transmission for rapid thermal processing applications / Appl. Phys. Lett. 1990. V.56, No.10. P.961-963.

2). Sturm J.C., Garone P.M., Schwartz P.V., Temperature control of silicon-germanium alloy epitaxial growth on silicon substrates by infrared transmission / J. Appl. Phys. 1991.V.69, No.1. P.542-544.

3). Магунов А.Н., Мудров Е.В. Измерение температуры монокристалла кремния в диапазоне 300÷700 К по поглощению ИК-излучения / Теплофиз. выс. темпер. 1991. Т.29, N1. С.182-184.

4). Johnson S.R., Lavoie C., Tiedje T., Mackenzie J.A., Semiconductor substrate temperature measurement by diffuse reflectance spectroscopy in molecular beam epitaxy / J. Vac. Sci. Technol.B. 1993. V.11, No.3. P.1007-1010.

5). Pearsall T.P., Saban S.R., Booth J., Beard B.T. Jr., Johnson S.R., Precision of noninvasive temperature measurement by diffusive reflectance spectroscopy / Rev. Sci. Instrum. 1995. V.66, No.10. P.4977-4980.

6). Li Y., Zhou J.J., Thompson P., et al., Simultaneous in situ measurement of substrate temperature and layer thickness using diffuse reflectance spectroscopy (DRS) during molecular beam epitaxy / J. Cryst. Growth. 1997. Vol.175/176. P.250-255.

7). Yang M.J., Moore W.J., Yang C.H., Wilson R.A., Bennett B.R., Shanabrook B.V., Determination of temperature dependence of GaSb absorption edge and its application for transmission thermometry / J. Appl. Phys. 1999. Vol.85, No.9. P.6632-6635.

8). Balmer R.S., Martin T., Substrate temperature reference using SiC absorption edge measured by in situ spectral reflectometry / J. Cryst. Growth. 2003. V.248. P.216-221.


Лазерная интерференционная термометрия (опубликовано около 90 статей)

1). Bond R.A., Dzioba S., Naguib H.M. Temperature measurements of glass substrates during plasma etching / J. Vac. Sci. Technol. 1981. V.18, No.2. P.335-338.

2). Donnelly V.M., McCaulley J.A. IR-laser interferometric thermometry: a non-intrusive technique for measuring semiconductor wafer temperature during processing / J. Vac. Sci. Technol.A. 1990. V.8, No.1. P.84-92.

3). Sankur H., Gunning W. Noncontact, highly sensitive, optical substrate temperature measurement technique / Appl. Phys. Lett. 1990. V.56, No.26. P.2651-2653.

4). Магунов А.Н., Мудров Е.В. Измерение температуры кремниевой пластины в плазмохимическом реакторе методом лазерной интерферометрии / Теплофиз. выс. темпер. 1992. Т.30, N2. С.372-378.

5). Лукьянов А.Ю., Новиков М.А., Сколотов О.В., Шашкин В.И. Бесконтактный оптический контроль скорости роста и температуры в процессе металлоорганической газофазной эпитаксии / Письма в ЖТФ. 1993. Т.19, N 1. С.7- 11.

6). Лукин О.В., Магунов А.Н. Измерение температур стеклянной и кварцевой пластин методом лазерной интерферометрии / Опт. и спектр. 1993. Т.74, N3. С.630-633.

7). Fujiwara T., Yamada H., Temperature measurements of a birefringent substrate (LiNbO3) in a radio frequency discharge by laser interferometry / Rev. Sci. Instrum. 1994. Vol.65, No.1. P.267-268.

8). Perpina X., Jorda X., Madrid F., et al., Transmission Fabry-Perot interference thermometry for thermal characterization of microelectronic devices / Semicond. Sci. Technol. 2006. V.21. P.1537-1542.

Отражение от поверхности (опубликовано более 100 статей)

1). Paddock C.A., Eesley G.L., Transient thermoreflectance from thin metal films / J. Appl. Phys. 1986. V.60, No.1. P.285 – 290.

2). Kroesen G.M.W., Oehrlein G.S., Bestwick T.D. Nonintrusive wafer temperature measurement using in situ ellipsometry / J. Appl. Phys. 1991. V.69, No.5. P.3390-3392.

3). Quintard V., Deboy G., Dilhaire S., et al., Laser beam thermography of circuits in the particular case of passivated semiconductors / Microelectronic Eng. 1996. Vol.31. P.291-298.

4). Guidotti D., Optical reflectance thermometry for rapid thermal processing / J. Vac. Sci. Technol. B. 1998. Vol.16, No.2. P.609-612.

5). Phan T., Dilhaire S., Quintard V., Claeys W., Batsale J.C., Thermoreflectance measurements of transient temperature upon integrated circuits: application to thermal conductivity identification / Microelectronics Journal. 1998. Vol.29. P.181-190.

6). Якушев М.В., Швец В.А. Использование эллипсометрических измерений для высокочувствительного контроля температуры поверхности / Письма в ЖТФ. 1999. Т.25, №14. С.65-71.

7). Daineka D., Suendo V., rosa i Cabarrocas P., Temperature dependence of the optical functions of amorphous silicon-based materials: application to in situ temperature measurements by spectroscopic ellipsometry / Thin Solid Films. 2004. V.468, No.1/2. P.298-302.

8). Burzo M.G., Komarov P.L., Raad P.E., Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method / IEEE Transact. On Components and Packaging Technologies. 2005. Vol.28, No.4. P.637-643.


Фотолюминесценция (опубликовано около 100 статей)

1). Kolodner P., Katzir A., and Hartsough N., Noncontact surface temperature measurement during reactive-ion etching using fluorescent polymer films / Appl. Phys. Lett. 1983. Vol.42, No.8. P.749-751.

2). As D.J. and Palmetshofer L., Laser-beam heating and high-temperature luminescence of CdTe / J. Appl. Phys. 1987. Vol.62, No.2. P.369-373.

3). Sandroff C.J., Turco-Sandroff F.S., Florez L.T., Harbison J.P., Substrate temperature measurement in a molecular beam epitaxy chamber using in situ GaAs photoluminescence monitoring / Appl. Phys. Lett. 1991. Vol.59, No.10. P.1215-1217.

4). Daugherty J.E. and Graves D.V., Particulate temperature in radio-frequency glow-discharges / J. Vac. Sci. Technol. A. 1993. Vol.11, No.4. P.1126-1131.

5). Shepard C.L., Cannon B.D., Khaleel M.A., Determination of temperature in glass with a fluorescence method / Int. J. Heat Mass Transfer. 2001. Vol.44. P.4027-4034.

6). Wang SP, Westcott S, Chen W., Nanoparticle luminescence thermometry / J. Phys. Chem. B. 2002. Vol. 106, No. 43. P. 11203-11209.

7). Koshimizu M., Shibuya K., Asai K., Shibata H., Measurement of the local temperature in an ion track using low-dimensional quantum confinement structure / Radiat. Phys. Chem. 2003. V.66. P.35-38.

8). Omrane A., Ossler F., Alden M., Surface temperature of decomposition construction materials studied by laser-induced phosphorescence / Fire and Materials. 2005. V.29. P.39-51.


Комбинационное рассеяние (опубликовано примерно 50 статей)

1). Brugger H. and Epperlein P.W., Mapping of local temperatures on mirrors of GaAs/AlGaAs laser diodes / Appl. Phys. Lett. 1990. Vol.56, P.1049-1051.

2). Rassat S.D., Davis E.J., Temperature measurement of single levitated microparticles using stokes/ anti-stokes Raman intensity ratios / Appl. Spectrosc. 1994. Vol.48, No.12. P.1498-1505.

3). Cui J.B., Amtmann K., Ristein J., Ley L., Noncontact temperature measurements of diamond by Raman scattering spectroscopy / J. Appl. Phys. 1998. Vol.83, No.12. P.7929-7933.

4). Kuball M., Rajasingam S., Sarua A., et al., Measurement of temperature distribution in multifinger AlGaN/GaN hetrostructure field-effect transistors using micro-Raman spectroscopy / Appl.Phys.Lett. 2003. Vol.82, No.1. P.124-126.

5). R. Aubry, C. Dua, J.-C. Jacquet, et al., Temperature measurement in AlGaN/GaN high-electron-mobility transistors using micro-Raman scattering spectroscopy / Eur. Phys. J. Appl. Phys. 2005. V.30, No.2. P.77-82.

6). Vaucher S., Catala-Civera J.M., Sarua A., et al., Phase selectivity of microwave heating evidenced by Raman spectroscopy / J. Appl. Phys. 2006. V.99, No.11.

7). Serrano J.R., Phinney L.M., Kearney S.P., Micro-Raman thermometry of thermal flexure actuators / J. Micromech. Microeng. 2006. V.16. P.1128-1134.

8). Kearney S.P., Phinney L.M., Baker M.S., Spatially resolved temperature mapping of electrothermal actuators by surface Raman scattering / J. Microelectromech. Systems. 2006. V.15, No.2. P.314-321.


Установки для лазерной термометрии

1). Guidotti D., Wilman J.G., Novel and nonintrusive optical thermometer / Appl. Phys. Lett. 1992. Vol.60, No.5. P.524-526.

2). Павловский И.Ю., Образцов А.Н., Спектрометр комбинационного рассеяния света для диагностики материалов in situ в газоразрядной плазме / ПТЭ. 1998. №2. С.144-148.

3). Fei Yu., Xi Ya., Chen Yu., Ma X., Shen Yu. Automation of temperature measurement by laser / Proc. SPIE. 1998. Vol.3558. P.87-92.

4). Johnson S.R., Grassi E., Beaudoin M., Boonzaayer M.D., Tsakalis K.S., Zhang Y.-H., Feedback control of substrate temperature during the growth of near-lattice-matched InGaAs on InP using diffuse reflection spectroscopy / J. Crystal Growth. 1999. Vol.201/202. P.40-44.

5). Якушев М.В., Швец В.А., Высокочувствительный эллипсометрический метод контроля температуры / Автометрия. 2002. №1. С.95-106.

6). Grauby S., Dilhaire S., Jorez S., Claeys W., Imaging setup for temperature, topography, and surface displacement measurements of microelectronic devices / Rev. Sci. Instrum. 2003. V.74, No.1. P.645 –647.

7). Shedd T.A., Anderson B.W., An automated non-contact wall temperature measurement using thermoreflectance / Meas. Sci. Technol. 2005. V.16. P.2483-2488.

8). Постников А.В., Косолапов И.Н., Куприянов А.Н. и др., Автоматизированный лазерный термометр для исследований плазменных процессов микротехнологии / ПТЭ. 2008. №2. С.173-176.

9). Волков П., Данильцев В., Лукьянов А. и др., Бесконтактный контроль температуры и толщины в технологии микро- и нанослоев / Наноиндустрия. 2008. №2. С.20-25.